If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2-1p-20=0
a = 1; b = -1; c = -20;
Δ = b2-4ac
Δ = -12-4·1·(-20)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-9}{2*1}=\frac{-8}{2} =-4 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+9}{2*1}=\frac{10}{2} =5 $
| 7x+8(x+1/4=(6x-9)-8 | | -32+x=-20 | | 9^(7x-3)=7^(9x-6) | | 63+7k=8 | | 4v=-4v2–1 | | -4x-8(2)=-20 | | 2×12(2÷1)=x | | -4(7-3y)-8y=-20 | | 540÷(x+6)=540÷x+3 | | 0.3{x+7}=0.2{x-2} | | -2(-2+y)+2y=2 | | a(3)-9a(3)=0 | | 10x+7-3=52 | | a3-9a3=0 | | 2/3y-3/5=42/5 | | 8^-x+3=31 | | 2t^2-4=1 | | 6x-2(3)=-12 | | -12u+3=8-1 | | 4x—5=2+3(x—3) | | 4b=58 | | 6(-19+6y)-2y=-12 | | .002x=5 | | -10=-10+17m | | 3(-2x+5)=-5x-17-x | | 0=x(-0.005x+1) | | 1z=103,680 | | x+x+8+2x=180 | | 3x/10+x/10=10/15 | | 16g=1736 | | 5/7=2/5p | | (7k+8)(k+6)=0 |